Методика расчета полных таблиц смертности

Расчет полных таблиц смертности состоит из следующих шагов:

Шаг 1. Расчет среднегодового населения.

На этом этапе рассчитывается численность населения на середину года:

$$P_{x} = \frac{P_{x}^{t} + P_{x}^{t+1}}{2}$$

Здесь P_x^t обозначает численность населения в возрасте x на начало года t, а P_x^{t+1} - численность населения в возрасте x на начало следующего года (t+1) при расчете таблицы смертности за год t.

Шаг 2. Расчет повозрастного числа умерших с поправкой на число умерших неизвестного возраста. Для этого сначала рассчитывается воправочный коэффициент k:

$$k = \frac{D}{D - D^u}$$

где D обозначает суммарное число умерших, а D^u - число умерших неизвестного возраста. После этого число умерших в возрасте x с поправкой на умерших неизвестного возраста (D^c)

рассчитывается как:

$$D_x^c = D_x.k$$

где D_x - число умерших в возрасте x из формы C42.

Шаг 3. Расчет наблюдаемых повозрастных коэффициентов смертности для возрастов 0-99 лет и для открытого возрастного интервала 100+ лет.

Коэффициент смертности рассчитывается для каждого года возраста в интервале 0-100+ как отношение числа умерших в данном возрасте к среднегодовой численности населения в данном возрасте за соответствующий календарный год:

$$M_{x} = \frac{D_{x,t}}{P_{x,t}}$$

где M_x - коэффициент смертности в возрастном интервале (x,x+1). $D_{x,t}$ - число смертей в возрастном интервале (x,x+1) в календарном году t. $P_{x,t}$ - среднегодовая численность населения в возрастном интервале (x,x+1) для календарного года t.

В случае малых популяций или возрастных групп с низкой смертностью возможны случаи, когда повозрастной коэффициент смертности равен нулю. В случае малых популяций также возможны случаи когда численность населения в одногодичной возрастной группе также равна нулю и коэффициент смертности не может быть рассчитан. В обоих случаях значение M_x для данной возрастной группы берется из таблицы С42 для более крупного территориального образования (как правило, федерального округа, в который входит данный регион). Подобная импутация особенно важна, если значение коэффициента смертности равно нулю в последней возрастной группе. Следует, однако, отметить, что для регионов с малой численностью населения количество таких импутаций становится достаточно большим, что снижает точность получаемой полной таблицы смертности.

Шаг 4. Расчет повозрастных значений вероятности смерти для возрастов 1-100+ лет.

Повозрастные коэффициенты смертности, полученные на предыдущем шаге, затем конвертируются в повозрастные вероятности смерти с помощью известной формулы для одногодичного возрастного интервала:

$$q_x = \frac{2M_x}{2 + M_x}$$

где M_x – наблюдаемый коэффициент смертности (M_x) в интервале (x,x+1).

Величина a_x берется равной 0,5 для всех возрастов, начиная с возраста 1 год.

Шаг 5. Расчет вероятности смерти для первого года жизни.

Вероятность смерти на первом году жизни рассчитывается с помощью фактора сепарации f:

$$f = \frac{D^{t-1}}{D^{t-1} + D^t}$$

где D^{t-1} - число младенцев, умерших в данном году, но родившихся в предыдущем году, D^t - число младенцев, умерших в данном году и родившихся в данном году

Вероятность смерти на первом году жизни рассчитывается на основании фактора сепарации, числа родившихся в текущем и предыдущем году и суммарного числа умерших детей до года:

$$q_0 = \frac{D_0 (1 - f)}{B_t} + \frac{D_0 f}{B_{t-1}}$$

где B_t и B_{t-1} - число родившихся в текущем и предыдущем годах, D_0 - число младенцев, умерших в текущем году, f - фактор сепарации.

В тех редких случаях (обычно в популяциях с малой численностью населения), когда число умерших младенцев оказывается равным нулю, то в качестве коэффициента смертности на первом году жизни берется коэффициент для более крупного территориального образования (соответствующего федерального округа) и вероятность смерти на первом году жизни рассчитывается по формуле (метод Евростата):

$$q_0 = \frac{M_0}{1 + (1 - a_0) M_0}$$

где a_0 равно 0,1.

Шаг 6. Расчет остальных элементов таблицы смертности.

После получения значений повозрастной вероятности смерти в возрасте 0-100+ лет, расчеты остальных элементов таблицы смертности проводятся по стандартным формулам.

Число доживших в возрасте 0 или корень таблицы смертности (l_0):

 $l_0 = 100000$ новорожденных

Число умерших в возрастном интервале x, x+1 (d_x):

$$d_x = l_x q_x$$

Число доживших до возраста $x(l_x)$:

$$l_x = l_{x-1} - d_x$$

Вероятность дожития в интервале x, x+1 (p_x):

$$p_x = 1 - q_x$$

Вероятность дожития в интервале не включалась в таблицу смертности, поскольку эта величина связана с вероятностью смерти простой формулой и не несет никакой дополнительной информации. Кроме того, эта величина редко включается в таблицу смертности статистическими организациями других стран.

Число человеко-лет, прожитых в интервале x, x+1 в стационарной популяции (L_x) для возрастов 1-99:

$$L_x = \frac{l_x + l_{x+1}}{2}$$

В первой возрастной группе до года величина L_0 рассчитывается по формуле:

$$L_0 = f l_0 + (1 - f) l_1$$

где f обозначает фактор сепарации, описанный выше (см, шаг 5).

Если число младенцев, умерших на первом году жизни, равно нулю, то величина L_0 рассчитывается по формуле:

$$L_{0} = \frac{l_{0} + l_{1}}{2}$$

где значения l_0 и l_1 рассчитаны в результате использования значения M_0 для соответствующего более крупного территориального образования.

В последней возрастной группе ω:

$$L_{\omega} = l_{\omega} e_{\omega}$$

где

$$e_{\omega} = \frac{1}{M_{\omega}}$$

В самых старших возрастах значения коэффициентов смертности нередко оказываются заниженными. Слишком низкие значения смертности в самой последней возрастной группе приводят к неоправданно завышенным значениям L_{ω} и как следствие — завышенным значениям e_{ω} . Поэтому в тех случаях, когда коэффициент смертности в последней возрастной группе (100+ лет) оказывается ниже коэффициента смертности в предыдущей возрастной группе (99 лет), то значение L_{ω} рассчитывается по формуле:

$$L_{\omega} = \frac{l}{2}$$

Это позволяет избежать проблем в тех случаях (обычно в регионах с малой численностью населения), когда смертность в последней возрастной группе оказывается равной нулю.

Суммарное число человеко-лет, прожитое, начиная с возраста x (кумулятивное стационарное население) (T_x) равно:

$$T_{x} = \sum_{i=x}^{\infty} L_{i}$$

Продолжительность предстоящей жизни в возрасте $x(e_x)$:

$$e_x = \frac{T_x}{l_x}$$

Результаты расчета полных таблиц смертности Российской Федерации и субъектов Российской Федерации за 2016 и 2017 годы рассмотрены в последующих разделах.

Методика расчета кратких таблиц смертности

Расчет кратких таблиц смертности состоит из следующих шагов:

Шаг 1. Расчет среднегодового населения.

На этом этапе рассчитывается численность населения на середину года:

$$P_{x+x} = \frac{P_{x+\Delta x}^t + P_{x+x}^{t+1}}{2}$$

Здесь $P^t_{x+\Delta x}$ обозначает численность населения в возрастном интервале $x+\Delta x$ на начало года t, а $P^{t+1}_{x+\Delta x}$ - численность населения в возрастном интервале $x+\Delta x$ на начало следующего года (t+1) при расчете таблицы смертности за год t.

Шаг 2. Расчет повозрастного числа умерших с поправкой на число умерших неизвестного возраста. Для этого сначала рассчитывается воправочный коэффициент k:

$$k = \frac{D}{D - D^u}$$

где D обозначает суммарное число умерших, а D^u - число умерших неизвестного возраста.

После этого число умерших в возрастном интервале $x+\Delta x$ с поправкой на умерших неизвестного возраста ($D^c_{x+\Delta x}$) рассчитывается как:

$$D_{x+x}^c = D_{x+x}k$$

где $D_{x+\Delta x}$ - число умерших в возрастном интервале $x+\Delta x$ из формы C42.

Так как типичная шкала возраста при построении кратких таблиц смертности составляет 0, 1-4, 5-9, ...,90+, а первая возрастная группа в случае пятилетних возрастных интервалов в формах 2-РН и С42 составляет 0-4, то проводились следующие манипуляции. В качестве первой возрастной группы брались значения численности населения и числа умерших для соответствующей одногодичной возрастной группы. Численность населения и число умерших для второй возрастной группы (1-4) рассчитывались как разность между соответствующими числами в группе 0-4 и одногодичной группе 0.

Шаг 3. Расчет наблюдаемых повозрастных коэффициентов смертности для возрастых интервалов 1-4, 5-9,...85-89 лет и для открытого возрастного интервала 90+ лет.

Коэффициент смертности рассчитывается для каждого возрастного интервала 1-4, 5-9, ...,90+ как отношение числа умерших в данном возрастном интервале к среднегодовой численности населения в данном возрастном интервале за соответствующий календарный год:

$$M_{x+x,t} = \frac{D_{x+x,t}}{P_{x+x,t}}$$

где $M_{x+\Delta x,t}$ - коэффициент смертности в возрастном интервале $(x,x+\Delta x)$. $D_{x+\Delta x,t}$ - число смертей в возрастном интервале $(x,x+\Delta x)$ в календарном году t. $P_{x+\Delta x,t}$ - среднегодовая численность населения в возрастном интервале (x,x+1) для календарного года t.

Шаг 4. Расчет значений вероятности смерти, начиная с возрастной группы 1-4 года и до последней группы в 90+ лет.

Для возрастных групп, начиная с группы 1-4 года и до группы 90+ лет, полученные коэффициенты смертности конвертируются в вероятности смерти с использованием метода Гревилла. Этот метод дает сходные результаты с актуарным методом, используемым для построения полных таблиц, и при этом обеспечивает то, что вероятности никогда не бывают больше 1. Согласно Гревиллу:

$$q_{x+x} = \frac{M_{x+x}}{\frac{1}{\Delta^{x}} + M_{x+\Delta^{x}} \cdot \left[0.5 + \frac{\Delta^{x}}{12} (M_{x+\Delta^{x}} - lnC)\right]}$$

где Δx обозначает длину возрастного интервала

 $q_{x+\Delta x}$ – вероятность смерти в интервале $(x, x+\Delta x)$

 $M_{x+\Delta x}$ – наблюдаемый коэффициент смертности в интервале (x, x+ Δ x)

lnC равно:

$$lnC = \frac{1}{45} \frac{M_{85}}{M_{40}}$$

Для открытого возрастного интервала 90+ лет вероятность смерти равна единице.

Шаг 5. Расчет вероятности смерти в возрасте 0 лет.

Вероятность смерти в возрасте 0 рассчитывается так же, как и для полной таблицы смертности.

Шаг 6. Расчет остальных элементов таблицы смертности.

Остальные элементы таблицы смертности рассчитываются по тем же формулам, что и для полной таблицы смертности.

Вероятность смерти в последнем открытом возрастном интервале равна единице.

Отметим также расчет числа человеко-лет, прожитых между x и $x+\Delta x$ для возрастных интервалов от 1-4 до 90+ лет:

$$L_{x+x} = x (l_{x+x} d_{x+x} + a_x x d_{x+x})$$
 3десь длина интервала $\Delta^{\hat{\Lambda}}$ равна 4 для интервала 1-4 года и 5 для остальных возрастных интервалов.

Здесъ длина интервала $\Delta \hat{x}$ равна 4 для интервала 1-4 года и 5 для остальных возрастных интервалов. a_x равно 0,41 для интервала 1-4 года и 0,5 для остальных возрастных интервалов. Величина L_0 для первого возрастного интервала рассчитывается так же как и для полной таблицы смертности.

В последней возрастной группе ω :

$$L_{\omega} = l_{\omega} e$$

где

$$e^{\,\omega} = \frac{1}{\stackrel{\circ}{M}}$$

В последней возрастной группе (90+ лет) значения коэффициентов смертности могут оказаться заниженными или вообще равны нулю. Поэтому в тех случаях, когда коэффициент смертности в последней возрастной группе (90+ лет) оказывается ниже коэффициента смертности в предыдущей возрастной группе (85-89 лет), то значение L_{ω} рассчитывается по формуле:

$$L_{\omega} = \frac{l}{2}$$

Таким образом, в данном случае используется тот же подход, что и при построении полной таблицы смертности.

Методика расчета ОПЖ

Территория	Действующая			Предлагаемая		
	Мужчины	Женщины	Оба пола	Мужчины	Женщины	Оба пола
Россия	67,51	77,64	72,70	67,50	77,62	72,69
Чукотский автономный округ	60,33	71,66	66,10	59,79	69,75	64,86
Красноярский край	65,04	76,07	70,61	65,04	76,07	70,60
г. Москва	74,39	81,11	77,87	74,30	81,03	77,79
Магаданская область	63,41	75,49	69,37	63,01	75,00	69,17